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Abstract—As Software-Defined Networking has gained increas-
ing prominence, new attacks have been demonstrated which can
corrupt the SDN controller’s view of network topology. These
topology poisoning attacks, most notably host-location hijacking
and link fabrication attacks, enable adversaries to impersonate
end-hosts or inter-switch links in order to monitor, corrupt, or
drop network flows. In response, defenses have been developed
to detect such attacks and raise an alert. In this paper, we
analyze two such defenses, TopoGuard and Sphinx, and present
two new attacks, Port Probing and Port Amnesia, that can
successfully bypass them. We then develop and present extensions
to TopoGuard to make it resilient to such attacks.

I. INTRODUCTION

Software-Defined Networking (SDN) is a networking

paradigm that facilitates network management and administra-

tion by providing an interface to control network infrastructure

devices (e.g., switches). In this paradigm, the system respon-

sible for making traffic path decisions (the control plane) is

separated from the switches responsible for delivering the

traffic to the destination (the data plane). The SDN controller

is the centralized system that manages the switches, installs

forwarding rules, and present an abstract view of the network

to the SDN applications.

SDN provides flexibility, manageability, and programmabil-

ity for network administrators. Complex network management

tasks can be implemented using high-level SDN controller

abstractions and APIs without the need to deal with low-

level network functionalities. Moreover, the centralized model

can facilitate the reconstruction of important holistic network

properties, such as the network topology, without the need for

more sophisticated, distributed algorithms. These advantages

have resulted in the relatively rapid adoption of SDN. Open-

Flow [28] is one realization of SDN which has been widely

implemented in commercial devices [14].

Unfortunately, such flexibility presents new security chal-

lenges. The centralized model of SDN makes SDN controllers

an attractive target for attackers. Security concerns considered

to date include rule consistency [38], operator-error in con-

figuring SDN devices [6], and denial-of-service attacks [41].

Several proposed defenses have focused on mitigating such

weaknesses [43], [23], [25]. In addition, many new languages

have been proposed to specify SDN rules and configurations,

which can facilitate formal verification of such rules [42], [13],

[22], [32]. The focus of these language efforts has primarily

been on rule consistency or implementation bottlenecks that

can be abused by an attacker.

Another class of attacks against SDN are high-level protocol

attacks that seek to abuse SDN services to poison the con-

troller’s abstraction of the network and its properties. Topology

tampering attacks are a prominent example of high-level SDN

protocol attacks. In a topology tampering attack, an attacker

seeks to poison the controller’s view of the network topology,

convincing it to believe a false topology is present instead of

the actual physical topology. Through link-fabrication attacks,

a malicious actor can redirect traffic over forged network links

passing through compromised machines, enabling man-in-the-

middle or denial-of-service attacks. With host-location hijack-

ing attacks, an attacker can impersonate an end-host and cause

traffic bound for the victim to be re-directed to the attacker

[16]. By impersonating an important server, for example, an

attacker can hijack new and ongoing client sessions.

Two recent defenses, TopoGuard [16] and SPHINX [8],

attempt to detect these topology tampering attacks via monitor-

ing of switch-based sensors and packets sent to the SDN con-

troller. TopoGuard relies on behavioral profiling and invariant-

checking to detect false network links and spoofed end-hosts,

respectively. SPHINX uses an anomaly-detection approach,

relying on the inconsistencies in network state at different

sensors to detect attacks.

In this paper, we systematically evaluate the effectiveness

of these defenses and demonstrate that they can be bypassed

generically. We present two novel attacks which we call Port

Amnesia and Port Probing. They can be used as precursors

to link fabrication and host location hijacking by attackers to

avoid detection. Through port amnesia, an attacker can force

a reset in the port type which is used by the defenses to detect

anomalous link advertisements. After mounting port amnesia,

link fabrication can succeed without being detected by To-

poGuard or SPHINX. Through port probing, an attacker sends

a fake message bringing a port up at a wrong location after

the port goes down for routine migrations or maintenance. We

build generic port amnesia and port probing attacks followed

by link fabrication and host-location hijacking attacks that suc-

ceed undetected even when both TopoGuard and SPHINX are

present, without requiring per-defense customization. Through



analysis of these attacks, we argue that not only are these

defenses insufficient to prevent topology tampering, but that

approaches which rely solely on passive monitoring of network

events could be vulnerable to the same attacks. Furthermore,

even when passive monitoring can detect certain attacks, we

argue that it is often hard for the controller to distinguish

between the attacker and the victim. This provides attackers

the opportunity to use the defense system itself as a mechanism

for denial-of-service attacks.

Using the insights gained from these attacks, we then

develop and implement TOPOGUARD+, an extension to To-

poGuard built on top of its open-source version [45], which

prevents in-band LLDP port amnesia attacks through monitor-

ing of characteristic control plane message patterns generated

as part of the attack. We also develop a defense against

out-of-band port amneisa attacks. These attacks rely on an

attacker having access to a secret channel used to relay LLDP

packets outside of the network. The defense takes advantage

of this, and detects unavoidable latency additions introduced

by processing packets over the external channel. Both defenses

are evaluated on a testbed network, and are found to introduce

negligible overhead on dataplane flows.

The contributions of this paper are as follows:

• We construct two new topology tampering attacks, port

amnesia and port probing, that can bypass state-of-the-

art SDN defenses, TopoGuard and SPHINX. We show

that these attacks can successfully poison the controller’s

view of the network topology even when TopoGuard

and SPHINX are both deployed, without requiring per-

defense customization.

• We implement and evaluate our attacks on an SDN

network and measure their parameters and properties.

• We discuss the generality of our attacks and their appli-

cability to passive monitoring defenses.

• We design, implement, and evaluate countermeasures

against all forms of Port Amnesia, and argue that active,

dynamic defenses will be necessary to mitigate topology

tampering attacks in SDN networks.

The remainder of the paper is laid out as follows. In Section

II we provide an overview of Software-Defined Networking

and the OpenFlow architecture. Classes of topology tampering

attacks, TopoGuard, and SPHINX are discussed in Section III.

We provide the details of our attacks in Section IV. Analysis

of their effectiveness and implementation details are presented

in Section V. TOPOGUARD+ is presented in Section VI and

evaluated in Section VII. Related work is discussed in Section

IX and we conclude in Section X.

II. SDN OVERVIEW

Software-Defined Networking (SDN) is a networking

paradigm that separates the control plane from the data plane

and provides a logically centralized controller, facilitating

faster and easier network monitoring and management [11].

The control plane (i.e., the controller) decides how packets

should be handled while the data plane (i.e., the switches) is

responsible for the forwarding of packets in accordance with

those decisions.

The OpenFlow standard [33] an architecture that relies on

a logically centralized, software-based controller, which com-

municates over a secure control plane to OpenFlow-enabled

network switches. An OpenFlow switch routes network dat-

aplane packets based on flow tables, which are ordered lists

of rules where each rule consists of a guard, a set of actions

to trigger, and a time to expiration. The actions are activated

and the packet processed only if the packet’s header pattern-

matches successfully against the guard for that rule. If a packet

does not match any rules in a flow table, it is forwarded to

the OpenFlow controller as a Packet-In event.

Common open-source controllers include NOX/POX [15],

[36], Beacon [10], Floodlight [12], and Ryu [39]. Throughout

this paper, without loss of generality, we refer to the Floodlight

controller in our discussions of attack details defenses, but our

discussions are equally applicable to other controllers as well.

III. EXISTING ATTACKS AND DEFENSES

In this section, we discuss existing attacks and defenses

designed to corrupt an OpenFlow controller’s internal repre-

sentation of end-host locations and network topology. These

are protocol-based attacks which do not require an attacker

to have control-plane access or knowledge of any software

vulnerability in the controller or switches. Both attacks were

first discussed by Hond, et al. [16] and Dhawan, et al. [8],

who also proposed the TopoGuard and SPHINX defenses,

respectively. We summarize each defense below, but refer the

readers to the respective papers for a full overview.

A. Attacks

1) Link Fabrication: Modern SDN controllers provide a

Link Discovery Service which infers the existence of links

between switches. While the specific implementation varies

by controller, link discovery in general consists of three

phases. The controller first emits crafted Link Layer Discov-

ery Protocol (LLDP) packets to switches via Packet-Out

events. Next, each switch broadcasts the LLDP packet over

all dataplane ports. Finally, all switches that receive an LLDP

packet forward it to the controller via a Packet-In event,

containing the switch identifier and port on which the packet

was received. Thus, the controller can infer the existence of

a link between two switch ports by observing that an LLDP

packet sent by the controller to one switch was sent to the

controller by the other.

Link Fabrication attacks corrupt the controller’s view of

network topology, allowing the attacker to act as a virtual link

between two switches. In these attacks, the host captures a

legitimate LLDP packet broadcast from a switch and relays

it to another point in the network. When the packet is re-

introduced to the network, the controller infers the existence

of a link from the switch the packet was captured on, to the

switch on which the relayed packet was reintroduced. This

effectively allows an attacker to act as a man-in-the-middle

for all traffic flowing over the virtual link, as well as allowing



denial of service attacks via the creation of network blackholes

or forwarding loops.

2) Host Location Hijacking: Many OpenFlow controllers

also maintain a Host Tracking Service (HTS) that maps each

host’s addressing information (e.g., IP and MAC addresses) to

a network location defined by the switch and port to which the

host is connected. The HTS is kept up-to-date by OpenFlow’s

default flow rule handling: when a packet is received whose

header does not match an existing flow rule, it is forwarded

to the controller via a Packet-In event. The HTS logs

the source address data contained in the packet header and

binds (or, in the case of movement, updates) it to the switch’s

identifier and port at which the packet was originated.

Host Location Hijacking (HLH) attacks rely on corrupting

the HTS by spoofing the victim’s addressing information

from an attacker-controlled network location. This causes the

HTS to register a migration from the victim’s actual location

to the attacker’s location, prompting the installation of flow

rules that will redirect traffic to the attacker. HLH has some

similarities to conventional to ARP spoofing, but differs in

two key aspects. First, HLH attacks the MAC-to-Port binding

while ARP spoofing attacks the IP-to-MAC binding. Second,

HLH uses arbitrary packets while ARP spoofing targets ARP

specifically. This makes defenses to ARP attacks ineffective

against HLH.

B. TopoGuard

TopoGuard [16] is a recently proposed SDN security com-

ponent implemented for the Floodlight controller. It provides

detection capabilities against both Host-Location Hijacking

and Link Fabrication attacks. TopoGuard consists of two broad

components: a behavioral profiler and a policy enforcer. The

former infers the type of device connected to a switch port.

Devices may be classified as a HOST, a SWITCH, or ANY. All

devices begin as type ANY. If the controller receives dataplane

traffic whose source address has not been seen before from a

port, it is marked as a HOST. If the controller instead receives

LLDP packets from a port, it is marked as a SWITCH. On

detection of a Port-Down event, the type is reset to ANY.

The latter enforces a policy designed to detect each at-

tack. TopoGuard addresses Host Location Hijacking via a

Host Migration Verification policy that checks pre- and post-

conditions whenever migration is detected. The pre-condition

is that a host has disconnected from its original location via a

Port-Down event. The post-condition is that a host must be

unreachable at its previous location. This is checked by a ping

from the controller. If either is violated, an alert is raised.

TopoGuard addresses Link Fabrication attacks using two

techniques: authenticated LLDP packets and Port Property

verification. Authenticated LLDP packets are digitally signed

by the controller, preventing forgery or corruption by an

adversary. Port property verification uses behavioral profiling

to raise an alarm when either an LLDP packet is received from

a HOST port, or first-hop traffic is received from a SWITCH

port.

C. SPHINX

While TopoGuard is designed to detect specific protocol

violations, SPHINX is a more generic anomaly detector for

OpenFlow networks [8].

SPHINX uses flow graphs to detect anomalous dataplane

behavior. Flow graphs track the current and past routes taken

between two end-hosts, and are annotated with meta-data

(e.g., flow volume) gleaned from switch counters and packet

headers.

SPHINX does not explicitly check for either host location

hijacking or link fabrication. Rather, it attempts to detect diver-

gences between what the SDN controller intends network state

to be, a set of accepted invariants, and what the network state

actually is. Specifically, SPHINX assumes that Flow-Mod

messages emitted by the controller are trustworthy, as are

the majority of switches. It compares per-flow counter data

maintained by each switch with the expected values gleaned

from Flow-Mod messages and sanity invariants (e.g., ingress

and egress bytes per flow should be equal).

IV. TOPOLOGY TAMPERING ATTACKS

In this section, we present two new attacks, port amnesia

and port probing, that enable traditional link fabrication and

host-location hijacking attacks to succeed undetected even

when TopoGuard or SPHINX are deployed. Our attacks were

conducted within virtual machines running 64-bit Ubuntu

14.04, and are implemented via Bash scripts. We obtained

the TopoGuard [16] prototype system from the public Git

repository. We were unable to obtain a prototype for SPHINX

from the developers. As a surrogate, we implemented checks

for all of the invariants specified in Table 3 and Table 4 of

the SPHINX paper, as well as all automatically generated

flow-specific topological and forwarding constraints. While

it is possible that the authors’ version of SPHINX includes

additional checks, the attacks presented here do not exploit

flaws in SPHINX’ coverage. They instead rely on implicitly

trusted dataplane messages and unavoidable race conditions to

cause inconsistent network topologies.

A. Port Amnesia

Modern SDN defenses, such as TopoGuard and SPHINX,

attempt to prevent LLDP relaying via behavioral profiling.

TopoGuard, for example, uses a simple classifier based on

first-seen traffic. A node starts as ANY, and is either marked

as a SWITCH if an LLDP packet is seen or as HOST if other

first-hop traffic is generated.

However, LLDP exists because network topology may be

dynamic: a host could be unplugged and replaced by a switch,

and the network should be able to rapidly adapt accordingly.

This requires a behavioral profile to be able to be ‘forgotten’

in response to such a change, in order to avoid false positives.

Without access to out-of-band information on network state,

these changes in port usage must be inferred from OpenFlow

events logged by the controller.





but before it has rejoined at another location. While in transit,

the victim’s identifiers are not bound to any network location,

allowing the first host which transmits with those identifiers

to ‘complete’ the move from the controller’s point of view.

We introduce port probing as a technique that enables

attackers to learn, with high precision, when victims begin

movement and become susceptible despite the presence of

TopoGuard or SPHINX. Depending on the level of stealth

desired by an attacker and the amount of precision needed

in estimating when a host goes offline, port probing uses a

variety of liveness probes to periodically query a victim host.

Once those probes indicate that the victim has gone offline,

the host-location hijacking attack can be triggered.

Note that we focus on scenarios where the victim has a

legitimate movement, i.e., dynamic VM migration in a data-

center or planned server maintenance. Thus, we will wait for

that vulnerable period to ‘complete’ the movement. However,

a more sophisticated attacker may induce such movement,

creating a window of opportunity to attack. One such method

could be to utilize automatic VM migration based on resource

usage. Many hypervisors (e.g., VMware) offer services to

automatically migrate VMs between servers when CPU or

memory resources become saturated. An attacker could co-

locate a host with the target VM and mount a denial-of-service

attack against those resources (e.g., cache page dirtying or

heavy disk I/O) until the victim was moved by the hypervisor.

Figure 2 schematically depicts a port probing attack to

optimally time host-location hijacking against an SDN con-

troller running TopoGuard. The top of the figure displays an

abbreviated view of the Host Tracking Service database that

binds network identifiers to network locations. The center of

the figure depicts an example OpenFlow network. The dotted

line between the victim and switch 0x2 is the location to

which the victim intends to move. At the bottom, the network

identifiers used by the attacker and victim are displayed.

To instantiate the attack, a malicious user joins the network

with its own IP and MAC addresses (1). At this point the Host

Tracking Service maintains an entry for both the attacker and

victim, correctly mapping their identifiers to network location.

In order to hijack the victim, the attacker must first acquire its

MAC address. We used arping, which is a tool to send and

receive arp packets. From a valid response, we then extract

the victim’s MAC address.

The attacker then begins the port probing phase. It periodi-

cally tests the victim’s reachability, waiting until the victim is

unreachable to continue the attack (2). The reachability tests

we’ve analyzed, and the precision/stealth tradeoffs between

them, are examined in Section IV-B1. Note that at this point

the victim has generated a Port-Down event in the process of

disconnecting, and it is no longer bound to port 2 on switch

0x1. Thus, TopoGuard has already validated the unfinished

move.

Once the victim is known to be offline, the attacker assumes

their identity via standard host-location hijacking (3).While

packet spoofing is sufficient, we observed that ifconfig can

reset a network interface card’s MAC and IP address rapidly

enough (4.1 milliseconds, onaverage) that spoofing via packet

header rewriting is unnecessary.

At this point the attacker has assumed the victim’s identity,

but the Host Tracking Service remains unaware of the change.

In order to generate a Packet-In event and complete the

victim’s movement, the attacker must first originate traffic

(4). Any dataplane (e.g., ICMP, HTTP, DNS, etc.) traffic will

suffice. At this point the attacker has successfully hijacked its

victim, and new flows with the victim as their destination will

instead be directed to the attacker.

Until the victim rejoins the network, the attacker may

impersonate the victim with impunity. During this time frame

no anomalous behavior is detected by SPHINX, and no

TopoGuard policies are violated: by winning the race condition

the attacker’s hijacking is indistinguishable (to the controller)

from a successful move by the victim. At some point, however,

the victim will complete its intended move to port 4 of switch

0x2 and rejoin the network (5). Once it originates traffic, the

Host Tracking Service will (depending on controller) either

have multiple switch ports assigned to the same identifier or

will begin oscillating between switch ports based on the last

seen packet. This will trigger SPHINX and other anomaly

detectors, and may break routing correctness as flows are

re-directed between victim and attacker, causing a denial-of-

service

Alert Floods The detection of the attack actually provides

further opportunities for the attacker to manipulate the network

by exploiting the action taken by the controller upon detec-

tion. Both SPHINX and TopoGuard raise an alert to prompt

intervention by a network operator whenever an anomaly or

policy violation is detected, respectively. Note, however, that

determination of which end-host is the attacker and which is

the victim is left to the operator, and may require follow-

up investigation (especially in the context of VM migration,

where the future location of the victim may require correlating

network and hypervisor logs). Furthermore, this alert does not

alter network state in any way, and thus does not block the

ongoing attack. It merely informs network operators that a

suspicious event has occurred.

Attackers can take advantage of this to flood operators with

spurious alerts by spoofing arbitrary end-host identifiers from

one or more nodes, thus, distracting them from a smaller

number of real victims on which the attackers want to maintain

persistence.

Conceivably, TopoGuard and SPHINX could be modified

to automatically isolate end-hosts after detecting a hijacking

attack. In this case, however, the system must infer which

of the two hosts is the attacker and which one is legitimate.

Without out-of-band data sources, any attempt to distinguish

is likely to be imperfect, thus can be leveraged by an attacker

to mount denial-of-service attacks by causing the controller

to isolate arbitrary victims for some period of time. Even if

both hosts are isolated the attacker can still mount a denial-

of-service attack, albeit at the cost of losing its own network

access. In some network environments, however (e.g., IaaS-

type cloud computing), acquiring a new end-host or virtual



TABLE I: Liveness Probe Options

Type Stealth Requirements Timing (ms)

ICMP Ping Low None 0.91± 0.04

TCP SYN Medium Port Known 492.3± 1.4

ARP ping High Same subnet 133.5± 1.6

TCP Idle Scan Very High Suitable zombie 1.8± 0.1

machine has low cost for the attacker.

1) Liveness Probing: In order to mount a Host Loca-

tion Hijacking attack without triggering either TopoGuard or

SPHINX, an attacker cannot impersonate a victim until that

victim has disconnected from the network. To determine when

this occurs the attacker must periodically test the victim’s

liveness via a network probe. These probes, however, may

themselves trigger an alert by a network monitoring systems

if they are distinct from normal network traffic. To this end,

we investigated several liveness probe options, summarized in

Table I. All of these are available using nmap, a standard net-

work mapping and reconnaissance tool. In Table I, the Stealth

column refers to the estimated likelihood of standard Intrusion

Detection Systems flagging probe traffic as suspicious, based

on recommended rules for the Snort open-source Intrusion

Detection System [34]. Note that a number of factors outside

of scan type also contribute to the stealthiness of an actual

scan, including the scan rate and various evasion techniques

like packet fragmentation. The Timing column indicates the

time resolution of each probe type by showing, in milliseconds

the mean and Standard Deviation of scan time from 1000

scans on our testbed, not including the round-trip time between

attacker and victim (which would be invariant over all scan

types).

ICMP ping is a standard test for reachability and liveness,

but is commonly blocked by firewalls. Even when an attacker

and victim are on the same subnet, frequent ICMP Pings are

an obvious indicator of network reconnaissance and are likely

to be flagged by IDS.

TCP SYN scans detect host reachability by initiating a TCP

handshake on a specified port. If the port is open or closed

(thus indicating an active host), the scanner will receive a

SYN-ACK or RST packet, respectively. If the request times

out, the host is assumed to be unreachable. Although TCP

traffic itself is ubiquitous and not subject to suspicion, SYN

scans are unique in that no data is exchanged over the TCP

session. Snort rules tracking zero-data flows may detect this

scanning technique. nmap can be used to evade such rules,

however, by adding decoy data and fake follow-up packets to

the established TCP session. TCP SYN scans are also very

slow. As can be seen in the table, a single scan takes almost

half a second to complete. As shown in Section V-B, this is

comparable to the time taken to launch the entire attack.

ARP ping scans broadcast an ARP Request for the target.

If the target responds with an ARP Reply, it is assumed to be

online. Standard ARP scan detection techniques assume that

the scan is being used for network-wide host discovery. They

look for large floods of ARP requests for non-existent IPs.

Targeted attacks against a known IP address are much harder

to detect (with a low false positive rate) due to the ubiquity

of ARP requests on Ethernet. In fact, the majority of network

IDS, including both Snort and Bro, do not support ARP ping

detection [46]. This stealthiness comes at a cost, however. ARP

scans are two order of magnitude slower than ICMP pings.

TCP idle scans [9] use a side channel in the TCP im-

plementation to scan a target indirectly. Instead of sending

TCP SYN normally, an intermediate ‘zombie’ host is used.

This zombie appears in traffic or IDS logs as the originator

of the scan, rather than the actual attacker. This technique is

extremely stealthy, but has pre-requisites which are not always

available. The attacker must be able to spoof a packet from

the zombie, and the zombie must be running a susceptible

versions of TCP.

Given these tradeoffs, we chose to use ARP pings in our

host location hijacking attacks as attacker and victim already

share the same network (by virtue of being administered by

the same SDN controller).

2) Downtime Window Duration: When running TopoGuard

or SPHINX, Host Location Hijacking attacks that do not rely

on alert floods are limited to the downtime window of an

offline or migrating host. Specifically, it is limited to the period

of time from when the attacker realizes the host is down (by

the failure of a liveness probe) to the period of time when

TopoGuard or SPHINX raise an alert that multiple network

locations are using the same identifier.

For some scenarios, such as target hosts which go offline for

patching or maintenance, attackers have a window of minutes

to hours within which to impersonate the target. In these cases

factors like scan rate (probes per minute) and network round-

trip times (10s to 100s of ms for enterprise networks [30])

are minor factors which do not appreciably impact the usable

downtime window.

Other scenarios, such as VM live migration, have tighter

time constraints. Live migration is a technique used by hyper-

visors to relocate a VM from one physical machine (and thus

network location) to another, while minimizing the disruption

of ongoing network sessions. Xen and VMWare, two of

the most commonly used hypervisors, have been consistently

shown to produce downtime windows on the order of seconds

[47], [40], [27], [44]. Round-trip times between VMs sharing

a cloud infrastructure are only on the order of hundreds of

microseconds [18]. However, in order to detect a migration in

progress an attacker needs a high probe rate with minimal

timeout before declaring the host unreachable. This may

reduce stealth, if a cloud-based IDS is present and configured

to monitor for network scans.

V. RESULTS

In this section we present the results of mounting our

attacks. We also discuss possible extensions indicated by the

evaluation.

A. Port Amnesia Attack

Colluding hosts are set up in the topology presented in

Figure 1. We successfully register links with the TopoGuard



controller by relaying LLDP packets over a second 802.11

wireless network . The controller infers a route through our

malicious link, allowing arbitrary man-in-the-middle attacks.

We leverage the bridge-util tools to create Linux bridges

between the SDN-connected interface and wireless interface of

each malicious host.

TopoGuard will not raise an alert when we create our false

link, as LLDP traffic is faithfully received and transmitted

while first-hop traffic is not generated. The SPHINX system

implicitly trusts new links, and only raises an alert when

existing links are changed. Furthermore, since all packets

sent to the link are faithfully transited, switch-based flow

counters do not register a discrepancy in inbound/outbound

traffic volume.

The in-band attack scenario requires that the attacker takes

a more active role. A primary consideration (given the need

to context-switch) is the rate at which LLDP packets are sent

by the controller. This is dependent upon the specific SDN

controller; Floodlight (and TopoGuard) send LLDP probes

out every 15 seconds (this was confirmed using Wireshark).

To defeat TopoGuard’s protections, the attacker must perform

a HOST/SWITCH context switch between sending host-like

traffic and sending LLDP packets. More generally, the port

amnesia attack must be performed at each context switch.

Using ifconfig to change a network interface (down and

then up with IP and MAC addresses) takes 3.25 milliseconds,

on average. However, the physical networking layer defines

how and when a switch will detect port-down messages,

which correspond to physical detachment of an interface from

a switch. For Ethernet over twisted-pair, the IEEE 802.3 stan-

dard defines a link integrity pulse time of 16 ± 8 milliseconds

[1]. If no link pulses are received for that interval, a device

is considered to be disconnected from the switch. An attacker

changing network identifiers faster than 16 milliseconds will

not trigger a port-down/up in the switch. Thus, in order to

context switch between HOST and SWITCH, an attacker must

wait at least 16 milliseconds between bringing the network

interface down and back up. In the worst case, this adds a 16

ms latency to each packet, but allows the attacker to interleave

their HOST and SWITCH traffic arbitrarily.

B. Port Probing Attack

The port probing timeline of events is detailed in Figure 3.

Green text indicates victim actions, red text indicates attacker

actions, and black text indicates SDN controller events. During

our attack, we take measurements at the points specified in

the timeline. We use date to provide the current system

time, with microsecond precision. Note that due to the limited

window of time in which the attacker can act with impunity,

actions taken after the victim down event are most critical to

optimize.

The primary goal of port probing is to quickly ascertain

that the victim is offline. This affects the total amount of time

that the attacker can impersonate the victim without detection.

Thus, the attacker wants to know as quickly as possible when

the victim disconnects by sending frequent probes with a

low timeout value. High probe rates, however, increase the

probability of detection by an IDS. Similarly, low timeout

values may generate false positives and trigger an alert if the

victim has not begun migration.

To determine how much delay an attacker must suffer to

remain stealthy, we performed two sets of experiments detailed

in Sections V-B1 and V-B2. In the first, we investigated the

factors that impact the optimal timeout threshold for attacker

probes. In the second, we investigated what scan rates for ARP

and TCP SYN scans are sufficient to generate an alert in the

Snort IDS using standard, best-practice detection rules.

Once the victim is known (or believed) to be offline, the

attacker launches a conventional host-location hijacking attack

by changing their network identifiers to those of the victim.

The time to do this using ifconfig is shown in Figure 4. On

average, this takes 9.94ms. Note that the distribution is heavy-

tailed, however, with some trials taking as long as 160ms.

Finally, the attacker uses the victim’s ID to send and receive

traffic. We measure the time that it takes (from the victim

going down) for the attacker to reach this success state. The

measurement is taken in two places: first, we measure when

our interface comes up as the victim. This is shown in Figure

5, and on average takes 478ms. The majority of this time

is spent waiting for a probe timeout after the victim has

gone offline, as can be seen in Figure 8. Once this step is

complete, the attacker successfully originates packets with the

victim’s identity. Additionally, we measure when the controller

acknowledges the attacker as the victim. This is shown in

Figure 6. Once complete, traffic sent to the victim is routed

to the attacker.

Our attack, from victim down to controller recognition of

ID, takes an average of 549ms. As discussed in Section IV-B2,

live VM migration downtime windows are on the order of

seconds. This leaves the majority of the victim migration

window open for attacker actions. For human-mediated move-

ment scenarios (e.g., a server going offline for patching), the

attack is virtually instantaneous with respect to the downtime

window.

Furthermore, the majority of this time is spent conducting

the final reachability probe to the target, and ensuring it has

timed out. In ideal network conditions (i.e., minimal variance

in RTT), probe timeout values could be reduced and this attack

could be launched in tens of milliseconds.

1) Probe Timeouts: Unlike port scans (which return packets

to the attacker), liveness scans can only detect a host going

offline by the absence of returned packets. The duration to wait

for a packet return before deciding the host if offline is referred

to as the probe timeout value, and often dominates the scan

duration (e.g., the standard ICMP ping defines timeout values

in seconds, while a scan may take only a few milliseconds).

The attacker has obvious incentive to minimize timeout values,

but in doing so risks false positives (i.e., believing the host

has gone offline when it has not) due to delayed packet

arrivals. Therefore, the attacker must estimate the distribution

characterizing the round-trip time (RTT) of packets. As long

as the attacker can measure the RTT of packets to the





individual ports on the target machine [46]. Given the paucity

of options for detecting ARP scans, we elected to send ARP

liveness probes at a rate of 54 KBps (1 packet every 50ms).

VI. DEFENSES

A. Port Probing

Recall that port probing relies on exploiting a fundamen-

tal race condition associated with host migration: the first

end-host claiming to be the target will be treated as such

by the controller. This attack crucially relies on the lack

of authentication surrounding network identifiers (e.g., MAC

and IP Address). More generally, it relies on the ability to

spoof network identifiers and the bindings between them.

Conventional network access control such as IEEE 802.1x [7]

uses a certificate or other cryptographic credential to verify

that a device is authorized before enabled traffic to transit

the network port used by the device. Unfortunately, 802.1x

does not cryptographically bind network identifiers (e.g., MAC

address) to user credentials, and thus is insufficient to prevent

port probing attacks. However, recent work on secure identifier

binding in SDNs [19] extends the coverage afforded by 802.1x

through the entire identifier stack. This would effectively

prevent port probing attacks, as the attacker can no longer

misleadingly claim to be the victim device without triggering

alerts.

B. Port Amnesia

Since recent work has demonstrated an effective defense

against port probing attacks, we focus our efforts on preventing

port amnesia attacks. To do so, we extend the open-source

version of TopoGuard [45] to detect characteristic anomalous

interactions corresponding to in-band and out-of-band port

amnesia attacks. TOPOGUARD+ adds two additional modules

to TopoGuard: a Control Message Monitor (CMM) module

that detects anomalous control plane interactions during LLDP

propagation, and a Link Latency Inspector (LLI) module that

detects abnormal latencies during LLDP propagation between

switches. CMM and LLI prevent in-band and out-of-band port

amnesia attacks respectively.

C. Control Message Monitor (CMM)

Recall that in-band port amnesia attacks rely on periodi-

cally resetting TopoGuard’s behavioral classifier during LLDP

propagation in order for end-hosts to appear as switches. The

CMM implements a checking procedure to detect this. When

an LLDP probe is in progress, receipt by the controller of

any of the following message types from a port involved in

the LLDP probe (either sender or receiver) will raise an alert.

Since the receiver may not be known in advance, the check is

retroactively applied to the receiving port for the time between

LLDP packet generation and receipt by logging the relevant

messages in the controller:

• Port-Up or Port-Down — This indicates a behavioral

profile reset used by in-band port amnesia. Each attacker

port must change its status from HOST to SWITCH

repeatedly, in order to both relay LLDP traffic and

originate data-plane traffic over their secure channel. This

necessitates bringing the interface down and up again,

which will raise an alert.

The CMM effectively stops in-band port amnesia attacks

by installing checks for behavior uniquely characteristic of,

and critical to, the attacks. Out-of-band port amnesia attacks,

however, do not have such a signature that can be easily

monitored. Instead, we address these attacks by focusing on

the fact that any out-of-band relaying will necessarily add

latency not present in a switch-switch connection.

D. Link Latency Inspector (LLI)

If an attacker has access to an out-of-band channel (e.g., a

wireless link) over which packets can be relayed, they do not

need to switch between HOST and SWITCH behavior profiles,

and thus can evade the CMM. However, utilizing this channel

incurs delays due to both signal propagation over the back

channel, and encoding/decoding of packets (e.g., converting

from Ethernet to 802.1n). 1

Based on this insight, we implemented a Link Latency

Inspector module in TOPOGUARD+ to measure the latency

of switch-internal links during all LLDP propagations, and

flag anomalies that may indicate a fabricated link. In order

to resolve the latency between two target switches (e.g., sw1

and sw2), we measure the overall LLDP propagation time

(TLLDP ) between them and the delays of control links (TSW1

and TSW2). Then, the switch link latency can be estimated as

TLLDP − TSW1 − TSW2.

LLDP Propagation Delay (TLLDP ). In order to measure

the LLDP propagation delay, we add an extra timestamping

function for each LLDP packet during link discovery proce-

dure. In particular, we extend LLDP packets with optional

Type-Length-Value (TLV) field that contains the encrypted

value of their departure times (by using controller-owned

keys). Once the SDN controller receives LLDP packets, it

may decrypt the timestamps and compute LLDP propagation

delays.

Control Link Latency (TSW ). In addition, we adopt echo

messages to measure round-trip delays between an SDN con-

troller and a switch. The idea is to utilize packet-out messages

to send out a probe message (ICMP ping) to the target switches

and set its next-hop (output action) to the controller. As long as

the controller receives the probe message, it measures the one-

time round-trip delays by computing the elapsed time from

sending the probe message to receiving it. Moreover, we take

the average of the latest three latency measurements of the

control links in order to minimize variance.

Verification of Link Update. The Link Latency Inspector

verifies link updates by considering its latency. The insight

lies in that the switch link latency may abnormally increase if

there exist extra devices or channels to relay LLDP packets. To

1This work assumes the attacker is using compromised end-hosts to
conduct LLDP relay attacks, which do not have specialized packet-forwarding
hardware or extremely high-bandwidth links. For example, a purely hardware-
based device which uses point-to-point laser communications is out of scope
of this work.



achieve the goal, the LLI utilizes a straightforward application

of interquartile range (IQR), which is widely used to find out-

liers in a set of data. The LLI maintains a fixed size data store

for values of the latencies of switch internal links measured

from verified LLDP packets and computes lower quartile (Q1),

upper quartile (Q3), and interquartile range (IQR, Q3-Q1)

upon the data store. When a new LLDP packet arrives in the

SDN controller, the LLI inspects the computed latency value

with the threshold (Q3 + 3IQR). If any suspicious latency of a

switch internal link is found, the Link Latency Inspector raises

an alarm to the network administrator and may optionally

block the topology update.

VII. EVALUATION

In this section, we present a performance and security

evaluation of TOPOGUARD+. We implemented a prototype

of TOPOGUARD+ over the TopoGuard system in the Flood-

light controller. In particular, we extended the LinkManager

application to inspect control messages during LLDP propa-

gation and measure LLDP propagation delays. In addition, we

implemented a new application to track real-time controller-

switch latencies that are reported LinkManager. To evaluate

TOPOGUARD+, we utilized Mininet to created an emulated

SDN testbed as shown in Figure 9. All data plane links are

configured with 5 milliseconds latency and an out-of-band link

between two attacker-compromised hosts with 10-millisecond

latency.

out✄of�band channel

control channel

data plane links

5ms

5ms

5ms

10ms

5ms

5ms

5ms

Floodlight (TopoGuard+)

5ms

Fig. 9: The evaluation testbed

A. Security Evaluation

In order to calibrate the Link Latency Inspector, we first

measured the latency of all four links in Figure 9. Figure 10

records 100 latency measurements of switch link latencies

from TOPOGUARD+. Overall, the average probed latencies for

all switch links is around 5 milliseconds, which is consistent

with our setup in the mock network environment. The only

potential consequences of these lower-latency measurements

is a slight decrease of the threshold value for detection of

anomalous links, which makes it easier to detect fake links.

In addition, the maximum latencies for those links exhibit

micro-burst characteristics (e.g.,, 12 milliseconds) which may

introduce false positives for TOPOGUARD+. We consider that

such jitter can be tolerated in the SDN controllers as we

discussed in Section VIII-A.

In order to evaluate the effectiveness of the LLI against

out-of-band port amnesia attacks, we also measure the latency

threshold distribution for anomalous link discovery, as shown

in Figure 11. From the startup of Floodlight controller, we

record both measured link latencies and computed thresh-

old for anomalous link detection. Moreover, we control two

compromised hosts to build up fake links by utilizing a side

channel, as shown in Figure 9, one minute after the bootstrap

of the Floodlight controller. The result showcases that TO-

POGUARD+ can effectively locate all fake links. Figure 13

depicts the alert raised for such a link. Note that the plot

begins with a set of burst values that dramatically raise the

detection threshold. This is due to the bootstrapping of the

Floodlight controller, which adds significant extra latency for

measurement of link latencies. Once it has reached a steady

state, the threshold values converge, which also showcases that

our approach can tolerate a small number of anomalous inputs

of link latencies.
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In addition, we measured the effectiveness of TO-

POGUARD+ against in-band port amnesia attacks. We

launched the aforementioned topology tampering attacks in

the testbed environment and confirmed that every port amnesia

attack was detected and an alert raised. As shown in Figure 12,

TOPOGUARD+ can successfully detect in-band port amnesia

attacks since such attacks must by necessity cause characteris-

tic control plane messages to be generated (e.g.,Port-Down

messages) during LLDP propagation.



Fig. 12: Alerts from TOPOGUARD+ for anomalous control

messages during LLDP propagation

07:17:09.608 ERROR [n.f.l.i.LinkDiscoveryManager:New I/O server worker #2✄3] Deteced suspicious link discovery: an abnormal delay during LLDP propagation

07:17:09.608 ERROR [n.f.l.i.LinkDiscoveryManager:New I/O server worker #2�3] link delay is abnormal. delay:22ms, threashold:14ms

07:17:09.609 ERROR [n.f.l.i.LinkDiscoveryManager:New I/O server worker #2✁6] Deteced suspicious link discovery: an abnormal delay during LLDP propagation

07:17:09.609 ERROR [n.f.l.i.LinkDiscoveryManager:New I/O server worker #2✂6] link delay is abnormal. delay:22ms, threashold:14ms

Fig. 13: Alerts from TOPOGUARD+ for anomalous link

latencies from link tampering attacks

B. Performance Evaluation

We also evaluated the performance overhead introduced by

TOPOGUARD+. In this experiment, we leveraged the Java

System.nanoTime API to measure time stamps of running

a program with the precision of 1 nanosecond. The major

performance overhead of TOPOGUARD+ lies in the extra

security inspections during processing of LLDP packets (i.e.,

monitoring control messages and link latencies), and not on

any dataplane operations (e.g., packet forwarding). The table II

shows TOPOGUARD+ adds an average of 0.299 milliseconds

to the LLDP processing logic in the Floodlight controller.

Moreover, TOPOGUARD+ also introduces 0.134 milliseconds

overhead to LLDP packet construction through the addition of

an extra encrypted timestamp TLV. The overall results show-

case TOPOGUARD+ add negligible overhead to the Floodlight

controller, none of which impact dataplane flows.

TABLE II: TOPOGUARD+’s Performance Overhead

Function Overhead introduced by TOPOGUARD+

LLDP Construction 0.134ms

LLDP Processing 0.299ms

VIII. DISCUSSION

A. False Alerts from the Bursts of Latency

TOPOGUARD+ may raise false alerts for micro-bursts in

link latencies as shown in Section VII. The consequence of

the false positives will falsely remove benign switch links

from topology view maintained by SDN controller, which

may further cause re-computation of routing paths and other

topology dependent services. However, we consider that the

SDN controller can withstand such fluctuating cases, as the

default link timeout value exceeds the LLDP probing interval

by a factor of 2-3, as shown in Table III. Thus, a benign

switch link will be removed from topology view of the

Floodlight controller only if there are multiple bursts of link

latencies over 10-35s, and not in response to an isolated event.

Moreover, we can also increase the timeout value to greatly

decrease the possibility of removal of benign switche links by

TOPOGUARD+.

IX. RELATED WORK

In addition to the attacks discussed in this paper, two other

primary types of SDN-specific attacks have been presented

TABLE III: Link timeout and discovery intervals in various

SDN controllers

Controller Link Discovery Interval Link Timeout

Floodlight 15s 35s

POX 5s 10s

OpenDaylight 5s 15s

in the literature to date: saturation attacks [41], [43] and

controller-switch communication [5] attacks.

Analogous attacks have been demonstrated in traditional

networking protocols. ARP poisoning is the most similar at-

tack to host location hijacking for traditional networks. Similar

link fabrication attacks have previously been demonstrated in

traditional networking protocols including Open Shortest Path

First [31], [20], Optimized Link State Routing Protocol [17],

and Spanning Tree Protocol [35].

A number of approaches have been developed that verify

that flow rules do not violate a set of invariants or that

an intended configuration state is maintained [2], [3], [24].

For instance, NetPlumber [23] and VeriFlow [25] observe

OpenFlow messages between the controller and switches and

detect if rules would be installed that violate an invariant or

pre-defined policy. Such verification approaches have focused

on logic errors in rules as opposed to malicious topological

manipulation and thus none of the approaches to date detect

the TopoMirage attacks.

Other related efforts include the work by Mekky, et al. [29]

to allow efficient inspection and filtering of higher network

layers in SDNs. Kotani and Okabe [26] filter Packet-In

messages according to some predefined rules to protect the

controller. LineSwitch [4] mitigates control plane saturation

DoS attacks by applying probabilistic black-listing. Spiffy [21]

detects link-flooding DDoS attacks in SDNs by applying rate

changes to saturated links. These defenses, although effective

against other attacks, do not detect the TopoMirage attacks.

X. CONCLUSION

We examined recently proposed defenses, TopoGuard and

SPHINX, that aim to prevent host location hijacking and link

fabrication attacks in SDNs. We presented two new attacks,

port amnesia and port probing, that can bypass state-of-the-

art topology tampering defenses, analyzed the parameters and

properties of these attacks, and demonstrate them against real-

world SDN systems. Furthermore, we designed, implemented

and evaluated countermeasures against these attacks.
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